Definicão de pirâmides
O termo pirâmide enquanto geometria, provém da definição matemática para um formato sólido ou abstrato com base poligonal (triangular, quadrilateral, ou pentagonal, etc), que possua forma triangular nas suas faces reunidas em um mesmo extremo chamado vértice piramidal, ou vértice da pirâmide. Sua origem etmológica é proveniente do vocábulo grego "pyramis", mas sua origem é controversa, visto que a palavra grega pyr significa fogo e não tem relação com a composição geométrica. Em egípcio pirâmide é denominada "mari" escrevendo-se apenas "mr", algo que só tem parâmetro com a palavra maia "muul", lembrando que a letra R não existe neste idioma, onde os maias trocam o R pelo L.
Apesar de muito conhecidas enquanto estruturas em formato diferenciado em relação aos padrões de edificação do mundo contemporâneo, as edificações piramidais configuram um complexo em que a maneira como poderiam ter sido edificadas permanece um mistério.
As mais famosas sem sombra de dúvida, são as pirâmides de Gizé, complexo piramidal no vale de Gizé perto da cidade do Cairo, atual capital do Egito. São famosas por se constituírem em uma das sete maravilhas do mundo antigo (a), por sinal a única que sobreviveu e que fez parte de todas as sete maravilhas denominadas no mundo antigo, medieval (b) e moderno(c).
Uma pirâmide é todo poliedro formado por uma face inferior e um vértice que une todas as faces laterais. As faces laterais de uma pirâmide são regiões triangulares, e o vértice que une todas as faces laterais é chamado de vértice da pirâmide. O numero de faces laterais de uma pirâmide corresponde ao número de lados do polígono da base. Como exemplo das pirâmides da geometria espacial no dia-a-dia temos as pirâmides do Egito, uma das sete maravilhas do mundo antigo.
Uma pirâmide é classificada como reta quando todas as arestas laterais são congruentes, caso contrário ela é classificada como oblíqua. Uma maneira mais fácil de identificar uma pirâmide reta é quanto o centro da base da pirâmide está alinhado com o vértice superior da pirâmide, em outras palavras, é possível traçar Dentre as pirâmides temos como principais:
Pirâmide Quadrada - aquela em que na base tem um quadrado.
Pirâmide Triangular - aquela em que na base tem um triângulo.
Pirâmide Pentagonal - aquela em que na base tem um pentágono.
Pirâmide Quadrangular - aquela em que na base tem um quadrilátero.
A identificação das pirâmides segue essa linha de raciocínio, ou seja, depende do formado da base da pirâmide.
GEOMETRIA ESPACIAL - PIRÂMIDES
O conceito de pirâmideConsideremos um polígono contido em um plano (por exemplo, o plano horizontal) e um ponto V localizado fora desse plano. Uma Pirâmide é a reunião de todos os segmentos que têm uma extremidade em P e a outra num ponto qualquer do polígono. O ponto V recebe o nome de vértice da pirâmide.
Faces laterais: São regiões planas triangulares que passam pelo vértice da pirâmide e por dois vértices consecutivos da base.
Arestas Laterais: São segmentos que têm um extremo no vértice da pirâmide e outro extremo num vértice do polígono situado no plano da base.
Apótema: É a altura de cada face lateral.
Superfície Lateral: É a superfície poliédrica formada por todas as faces laterais.
Aresta da base: É qualquer um dos lados do polígono da base.
Classificação das pirâmides pelo número de lados da base
triangular
quadrangular
pentagonal
hexagonal
base:triângulo
base:quadrado
base:pentágono
base:hexágono
Pirâmide Regular reta
Pirâmide regular reta é aquela que tem uma base poligonal regular e a projeção ortogonal do vértice V sobre o plano da base coincide com o centro da base.
O conceito de pirâmide
Consideremos um polígono contido em um plano (por exemplo, o plano horizontal) e um ponto V localizado fora desse plano. Uma Pirâmide é a reunião de todos os segmentos que têm uma extremidade em P e a outra num ponto qualquer do polígono. O ponto V recebe o nome de vértice da pirâmide.
Exemplo: As pirâmides do Egito, eram utilizadas para sepultar faraós, bem como as pirâmides no México e nos Andes, que serviam a finalidades de adoração aos seus deuses. As formas piramidais eram usadas por tribos indígenas e mais recentemente por escoteiros para construir barracas.
Elementos de uma pirâmide
Em uma pirâmide, podemos identificar vários elementos:
Base: A base da pirâmide é a região plana poligonal sobre a qual se apoia a pirâmide.
Vértice: O vértice da pirâmide é o ponto isolado P mais distante da base da pirâmide.
Eixo: Quando a base possui um ponto central, isto é, quando a região poligonal é simétrica ou regular, o eixo da pirâmide é a reta que passa pelo vértice e pelo centro da base.
Altura: Distância do vértice da pirâmide ao plano da base.
Faces laterais: São regiões planas triangulares que passam pelo vértice da pirâmide e por dois vértices consecutivos da base.
Arestas Laterais: São segmentos que têm um extremo no vértice da pirâmide e outro extremo num vértice do polígono situado no plano da base.
Apótema: É a altura de cada face lateral.
Superfície Lateral: É a superfície poliédrica formada por todas as faces laterais.
Aresta da base: É qualquer um dos lados do polígono da base.
Classificação das pirâmides pelo número de lados da base
do vértice V sobre o plano da base coincide com o centro da base.
R
raio do circulo circunscrito
r
raio do círculo inscrito
l triangular
quadrangular
pentagonal
hexagonal
base:triângulo
base:quadrado
base:pentágono
base:hexágono
Pirâmide Regular reta
Pirâmide regular reta é aquela que tem uma base poligonal regular e a projeção ortogonal
aresta da base
ap
apótema de uma face lateral
h
altura da pirâmide
al
aresta lateral
As faces laterais são triângulos isósceles congruentes
Área Lateral de uma pirâmide
Às vezes podemos construir fórmulas para obter as áreas das superfícies que envolvem um determinado sólido. Tal processo é conhecido como a planificação desse sólido. Isto pode ser realizado se tomarmos o sólido de forma que a sua superfície externa seja feita de papelão ou algum outro material.
No caso da pirâmide, a idéia é tomar uma tesoura e cortar (o papelão d)a pirâmide exatamente sobre as arestas, depois reunimos as regiões obtidas num plano que pode ser o plano de uma mesa.
As regiões planas obtidas são congruentes às faces laterais e também à base da pirâmide.
Se considerarmos uma pirâmide regular cuja base tem n lados e indicarmos por A(face) a área de uma face lateral da pirâmide, então a soma das áreas das faces laterais recebe o nome de área lateral da pirâmide e pode ser obtida por:
A(lateral) = n A(face)
Exemplo: Seja a pirâmide quadrangular regular que está planificada na figura acima, cuja aresta da base mede 6cm e cujo apótema mede 4cm.
Como A(lateral)=n.A(face) e como a pirâmide é quadrangular temos n=4 triângulos isósceles, a área da face lateral é igual à área de um dos triângulos, assim:
A(face) = b h/2 = 6.4/2 = 12A(lateral) = 4.12 = 48 cm²
O termo pirâmide enquanto geometria, provém da definição matemática para um formato sólido ou abstrato com base poligonal (triangular, quadrilateral, ou pentagonal, etc), que possua forma triangular nas suas faces reunidas em um mesmo extremo chamado vértice piramidal, ou vértice da pirâmide. Sua origem etmológica é proveniente do vocábulo grego "pyramis", mas sua origem é controversa, visto que a palavra grega pyr significa fogo e não tem relação com a composição geométrica. Em egípcio pirâmide é denominada "mari" escrevendo-se apenas "mr", algo que só tem parâmetro com a palavra maia "muul", lembrando que a letra R não existe neste idioma, onde os maias trocam o R pelo L.
Apesar de muito conhecidas enquanto estruturas em formato diferenciado em relação aos padrões de edificação do mundo contemporâneo, as edificações piramidais configuram um complexo em que a maneira como poderiam ter sido edificadas permanece um mistério.
As mais famosas sem sombra de dúvida, são as pirâmides de Gizé, complexo piramidal no vale de Gizé perto da cidade do Cairo, atual capital do Egito. São famosas por se constituírem em uma das sete maravilhas do mundo antigo (a), por sinal a única que sobreviveu e que fez parte de todas as sete maravilhas denominadas no mundo antigo, medieval (b) e moderno(c).
Uma pirâmide é todo poliedro formado por uma face inferior e um vértice que une todas as faces laterais. As faces laterais de uma pirâmide são regiões triangulares, e o vértice que une todas as faces laterais é chamado de vértice da pirâmide. O numero de faces laterais de uma pirâmide corresponde ao número de lados do polígono da base. Como exemplo das pirâmides da geometria espacial no dia-a-dia temos as pirâmides do Egito, uma das sete maravilhas do mundo antigo.
Uma pirâmide é classificada como reta quando todas as arestas laterais são congruentes, caso contrário ela é classificada como oblíqua. Uma maneira mais fácil de identificar uma pirâmide reta é quanto o centro da base da pirâmide está alinhado com o vértice superior da pirâmide, em outras palavras, é possível traçar Dentre as pirâmides temos como principais:
Pirâmide Quadrada - aquela em que na base tem um quadrado.
Pirâmide Triangular - aquela em que na base tem um triângulo.
Pirâmide Pentagonal - aquela em que na base tem um pentágono.
Pirâmide Quadrangular - aquela em que na base tem um quadrilátero.
A identificação das pirâmides segue essa linha de raciocínio, ou seja, depende do formado da base da pirâmide.
GEOMETRIA ESPACIAL - PIRÂMIDES
O conceito de pirâmideConsideremos um polígono contido em um plano (por exemplo, o plano horizontal) e um ponto V localizado fora desse plano. Uma Pirâmide é a reunião de todos os segmentos que têm uma extremidade em P e a outra num ponto qualquer do polígono. O ponto V recebe o nome de vértice da pirâmide.
Faces laterais: São regiões planas triangulares que passam pelo vértice da pirâmide e por dois vértices consecutivos da base.
Arestas Laterais: São segmentos que têm um extremo no vértice da pirâmide e outro extremo num vértice do polígono situado no plano da base.
Apótema: É a altura de cada face lateral.
Superfície Lateral: É a superfície poliédrica formada por todas as faces laterais.
Aresta da base: É qualquer um dos lados do polígono da base.
Classificação das pirâmides pelo número de lados da base
triangular
quadrangular
pentagonal
hexagonal
base:triângulo
base:quadrado
base:pentágono
base:hexágono
Pirâmide Regular reta
Pirâmide regular reta é aquela que tem uma base poligonal regular e a projeção ortogonal do vértice V sobre o plano da base coincide com o centro da base.
O conceito de pirâmide
Consideremos um polígono contido em um plano (por exemplo, o plano horizontal) e um ponto V localizado fora desse plano. Uma Pirâmide é a reunião de todos os segmentos que têm uma extremidade em P e a outra num ponto qualquer do polígono. O ponto V recebe o nome de vértice da pirâmide.
Exemplo: As pirâmides do Egito, eram utilizadas para sepultar faraós, bem como as pirâmides no México e nos Andes, que serviam a finalidades de adoração aos seus deuses. As formas piramidais eram usadas por tribos indígenas e mais recentemente por escoteiros para construir barracas.
Elementos de uma pirâmide
Em uma pirâmide, podemos identificar vários elementos:
Base: A base da pirâmide é a região plana poligonal sobre a qual se apoia a pirâmide.
Vértice: O vértice da pirâmide é o ponto isolado P mais distante da base da pirâmide.
Eixo: Quando a base possui um ponto central, isto é, quando a região poligonal é simétrica ou regular, o eixo da pirâmide é a reta que passa pelo vértice e pelo centro da base.
Altura: Distância do vértice da pirâmide ao plano da base.
Faces laterais: São regiões planas triangulares que passam pelo vértice da pirâmide e por dois vértices consecutivos da base.
Arestas Laterais: São segmentos que têm um extremo no vértice da pirâmide e outro extremo num vértice do polígono situado no plano da base.
Apótema: É a altura de cada face lateral.
Superfície Lateral: É a superfície poliédrica formada por todas as faces laterais.
Aresta da base: É qualquer um dos lados do polígono da base.
Classificação das pirâmides pelo número de lados da base
do vértice V sobre o plano da base coincide com o centro da base.
R
raio do circulo circunscrito
r
raio do círculo inscrito
l triangular
quadrangular
pentagonal
hexagonal
base:triângulo
base:quadrado
base:pentágono
base:hexágono
Pirâmide Regular reta
Pirâmide regular reta é aquela que tem uma base poligonal regular e a projeção ortogonal
aresta da base
ap
apótema de uma face lateral
h
altura da pirâmide
al
aresta lateral
As faces laterais são triângulos isósceles congruentes
Área Lateral de uma pirâmide
Às vezes podemos construir fórmulas para obter as áreas das superfícies que envolvem um determinado sólido. Tal processo é conhecido como a planificação desse sólido. Isto pode ser realizado se tomarmos o sólido de forma que a sua superfície externa seja feita de papelão ou algum outro material.
No caso da pirâmide, a idéia é tomar uma tesoura e cortar (o papelão d)a pirâmide exatamente sobre as arestas, depois reunimos as regiões obtidas num plano que pode ser o plano de uma mesa.
As regiões planas obtidas são congruentes às faces laterais e também à base da pirâmide.
Se considerarmos uma pirâmide regular cuja base tem n lados e indicarmos por A(face) a área de uma face lateral da pirâmide, então a soma das áreas das faces laterais recebe o nome de área lateral da pirâmide e pode ser obtida por:
A(lateral) = n A(face)
Exemplo: Seja a pirâmide quadrangular regular que está planificada na figura acima, cuja aresta da base mede 6cm e cujo apótema mede 4cm.
Como A(lateral)=n.A(face) e como a pirâmide é quadrangular temos n=4 triângulos isósceles, a área da face lateral é igual à área de um dos triângulos, assim:
A(face) = b h/2 = 6.4/2 = 12A(lateral) = 4.12 = 48 cm²
nao tem as planificaçoes por que?
ResponderExcluir